# Recent progress on graphs forbidding even holes 

## Dewi Sintiari

Wilfrid Laurier University

Ontario Combinatorics Workshop<br>Ottawa, Canada

12-13 May 2023

## Induced subgraph

$H$ is an induced subgraph of graph $G$, if it can be obtained by deleting some vertices of $G$.

- Deleting a vertex $v$ from $G$ means: delete $v+$ all edges incident to $v$


G

$H$


Figure: $H$ is an induced subgraph of $G$, but $H^{\prime}$ is not

## Forbidden induced subgraph

If $G$ does not contain $H$ as an induced subgraph, then we say:

- $G$ is $H$-free
- $G$ forbids $H$
- $G$ excludes $H$
- $H$ is a forbidden induced subgraph of $G$


A class $\mathcal{C}$ is $\mathcal{F}$-free, if $\forall G \in \mathcal{C}, \quad G$ is $\mathcal{F}$-free

## Why studying classes of graphs forbidding certain induced subgraphs?

- Many choices of forbidden induced subgraphs, so this could lead to publishing many papers.
- Many graph problems that are NP-hard (NP-complete) can be tackled when some structures are forbidden.
- Many graph classes have nice characterizations when some structures are forbidden.
- Induced subgraphs appear naturally in real-world (deleting vertex $=$ deleting object).

Topics to explore in this area of research:

- Structural properties;
- Algorithms for combinatorial graph problems;
- many others...


## Forbidding holes



cycle with chord

A hole $H$ in a graph is a chordless cycle of length at least 4.
It is even or odd depending on the parity of $|V(H)|$.

## Well-known graph classes forbidding holes

- Chordal graphs: forbid all holes.


Figure: An example: a chordal graph with eight vertices

- Perfect graphs: forbid all odd holes in the graph and in its complement.
- Even-hole-free graphs: forbid all even holes (and implicitly, all even holes of length $\geq 6$ in its complement).


## Four configurations that appear when forbidding holes*


theta

prism

pyramid

wheel

Figure: 4-configurations (dashed lines represent paths of length at least 1)

- No odd holes $\Rightarrow$ no (pyramid, wheel ${ }_{\text {type-1 }}$ )-free.
- No even holes $\Rightarrow$ no (theta, prism, wheel ${ }_{\text {type-2 }}$ )-free.
*The 4-configurations are actually called Truemper configurations; there is a nice survey about this written by Kristina Vušković.


## Four configurations that appear when forbidding holes

If $G$ is hole-free, then:

- $G$ is a clique; or
- $G$ has a clique cutset
$\dagger$


Graphs forbidding all holes

If $G$ is 4 -configurations-free, then:

- $G$ is a clique or $G$ is a hole; or
- $G$ has a clique cutset


Graphs forbidding 4-configurations

Figure: Tree-like structure of chordal graphs and 4-configuration-free graphs

[^0]Why studying:

## even-hole-free (ehf) graphs

## Motivation behind the study of even-hole-free graphs

Comparison between even-hole-free graphs \& perfect graphs

|  | Ehf graphs | Perfect graphs |
| :---: | :---: | :---: |
| Structure | "simpler" | more complex |
| Maximum clique | polynomial | polynomial |
| Coloring | $?$ | polynomial |
| Maximum independent set | $?$ | polynomial |

## Decomposition theorem

## Schema of decomposition theorem

If $G$ belongs to $\mathcal{C}$ then either $G$ is "basic (simple)" or $G$ has some "cutset with some particular property".

A vertex cutset (edge cutset) of a connected graph $G$ is a set of vertices (edges) $S$ such that $G \backslash S$ is not a connected graph.


Figure: Illustration of graph decomposition

2nd approach:

## forbidding more induced subgraphs

## A tool: width parameters

Treewidth (tw):
a parameter measuring how similar a graph from being a tree
A chordalization of $G$ is a graph obtained by adding edges to $G$ to make it chordal


Figure: A chordalization of a graph and its tree decomposition
Courcelle's theorem: many graph optimization problems are polynomially solvable when the treewidth is small.

Other width parameters: rankwidth, cliquewidth, branchwidth, etc., they bound one to each other.

## Planar even-hole-free graphs

Studied by Silva, da Silva, Sales (2010)


Figure: $9 \times 9$ grid

## Planar even-hole-free graphs

Studied by Silva, da Silva, Sales (2010)


Figure: $9 \times 9$ grid-minor

## Planar even-hole-free graphs

Studied by Silva, da Silva, Sales (2010)


Figure: $9 \times 9$ grid-minor

If a planar ehf graph $G$ contains a $9 \times 9$ grid-minor, then it contains either:

theta

prism

Theorem 1
If $G$ is planar ehf, then $t w(G) \leq 49$.

## Triangle-free even-hole-free graphs

Studied by Conforti, Cornuéjols, Kapoor, Vušković (2000), and Cameron, da Silva, Huang, Vušković (2016)


Figure: Triangle


Figure: Every triangle-free ehf graph can be formed this way

## Triangle-free even-hole-free graphs

Studied by Conforti, Cornuéjols, Kapoor, Vušković (2000), and Cameron, da Silva, Huang, Vušković (2016)


Figure: Triangle
Figure: A chordalization triangle-free ehf graph with clique number 6

Theorem 2
If $G$ is triangle-free ehf, then $t w(G) \leq 5$.

## Diamond-free even-hole-free graphs

Studied by Adler, Le, Müller, Radovanović, Trotignon, Vušković (2017)


Figure: Diamond


Figure: A family of diamond-free ehf graphs with high rankwidth

## $\underline{K_{4}-f r e e ~ e v e n-h o l e-f r e e ~ g r a p h s ~}$

Studied by S. \& Trotignon (2021))


Figure: $K_{4}$ (i.e., 4-vertex complete graph)


Figure: Layered wheel, a family of $K_{4}$-free ehf graphs with arbitrarily large treewidth

## $K_{4}$-free even-hole-free graphs



Figure: Layered wheel

Observation: the graphs contain a big clique minor and vertices of high degree.


When:

## the size of the clique minor is bounded

Studied by Aboulker, Adler, Kim, S., Trotignon (2021)

## Even-hole-free graphs with no big clique minor

Theorem 3
If $G$ is:

- $K_{t}$-minor-free
- has treewidth $\geq f_{K_{t}}(k)$

Then $G$ contains one of the following as an induced subgraph.

$k \times k$-wall

line graph of $k \times k$-wall

When:

## the maximum degree is bounded

Studied by Aboulker, Adler, Kim, S., Trotignon (2021)

## Even-hole-free graphs of maximum degree at most 3

## Structure theorems:

Basic graphs:

$K_{n}, n \leq 4$

hole

cube

proper wheel

pyramid

extended prism

Cutsets:


Implication: this class has treewidth $\leq 3$.


Figure: Decomposition of a non-basic subcubic even-hole-free graphs

## Even-hole-free graphs of maximum degree at most 4

Basic graphs:


Cutsets:


Implication: this class has treewidth $\leq 4$.

## Even-hole-free graphs of maximum degree $d \geq 5$

Conjecture 1
Let $G$ be a even-hole-free graph with maximum degree $d$, then one of the following holds.
(1) $G$ is a basic graph;
(2) G has a clique cutset.


## Even-hole-free graphs of maximum degree $d \geq 5$

## Conjecture 1

Let $G$ be a even-hole-free graph with maximum degree $d$, then one of the following holds.
(1) $G$ is a basic graph;
(2) G has a clique cutset.

Result by Abrishami, Chudnovsky, Vušković (2020):
Even-hole-free graphs of maximum degree d have treewidth bounded by some function of $d$.

Consequence: for even-hole-free graphs of maximum degree $d$, many combinatorial graph problems are solvable in polynomial time.

## A class related to ehf:

## graphs whose all holes have same odd length ( $\geq 7$ )

Studied by Horsfield, Preissmann, Robin, S., Trotignon, Vušković (2022)

Graphs whose all holes have same odd length (1st case)


Graphs whose all holes have same odd length (1st case)


Graphs whose all holes have same odd length (1st case)


## Graphs whose all holes have same odd length (1st case)



Figure: The first basic graph (ring)

Graphs whose all holes have same odd length (1st case)


Graphs whose all holes have same odd length (2nd case)


Graphs whose all holes have same odd length (2nd case)


Graphs whose all holes have same odd length (2nd case)


Graphs whose all holes have same odd length (2nd case)


Graphs whose all holes have same odd length (2nd case)


Graphs whose all holes have same odd length (2nd case)


## Theorem: Structure theorem

Let $\mathcal{C}_{k}$ be the class of graphs whose holes are all of odd length $k$, $k \geq 7$. Then for every graph $G \in \mathcal{C}_{k}$, one of the following holds:

- $G$ is a ring of length $k$; or
- $G$ is a "blowup" of an odd template;
or contains either:
- $G$ has a universal vertex; or
- $G$ has a clique cutset.

$v$ is a universal vertex

$v$ attaches to a clique


## Some complexity results on $\mathcal{C}_{k}$

The following results are proved by Horsfield (2022).
(1) Given a graph $G$, deciding whether $G \in \mathcal{C}_{k}$ (for some odd $k \geq 7$ ) can be done in $\mathcal{O}\left(n^{8}\right)$, where $n=|V(G)|$.
(2) There is an algorithm for the Maximum Weight Clique problem in $\mathcal{C}_{k}$ that works in $\mathcal{O}\left(n^{2} m\right)$ where $n=|V(G)|$ and $m=|E(G)|$.
(3) There is an algorithm for the Maximum Weight Independent Set problem in $\mathcal{C}_{k}$ that works in $\mathcal{O}\left(n^{3} m\right)$ where $n=|V(G)|$ and $m=|E(G)|$.

## Adapting the idea into even-hole-free graphs

Is it possible to generalize the structure theorem into graphs:

- allowing $k$-holes and ( $k+2$ )-holes?
- three odd holes?
- all odd holes (i.e., even-hole-free)?

Idea: "relaxing" the length of the paths connecting the top part and the bottom part in the blowup of odd-template.

## References

囯 D．Sintiari．
Width parameters on even－hole－free graphs（PhD Thesis）．
École Normale Supérieure de Lyon， 2021.
葍 J．Horsfield，M．Preissmann，C．Robin，N．L．D．Sintiari，N．Trotignon， K．Vǔsković．
When all holes have the same length．
arXiv：2203．11571， 2022.
亘 J．Horsfield．
Structural characterisations of hereditary graph classes and algorithmic consequences（PhD Thesis）．
The University of Leeds， 2022.
風 K．V Ǩsković．
Even－hole－free graphs：a survey．
The University of Leeds， 2010.

Thank you for listening!


[^0]:    ${ }^{\dagger}$ a clique in a graph is a set of pairwise adjacent vertices; a cutset of $G$ is a set of vertices whose removal increases \# connected components of $G$; a clique cutset is a cutset that induces a clique

